首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1338篇
  免费   129篇
  2021年   20篇
  2020年   21篇
  2019年   24篇
  2018年   37篇
  2017年   25篇
  2016年   35篇
  2015年   59篇
  2014年   67篇
  2013年   81篇
  2012年   131篇
  2011年   93篇
  2010年   62篇
  2009年   53篇
  2008年   64篇
  2007年   66篇
  2006年   53篇
  2005年   53篇
  2004年   53篇
  2003年   46篇
  2002年   38篇
  2001年   28篇
  2000年   16篇
  1999年   13篇
  1998年   15篇
  1997年   6篇
  1994年   10篇
  1993年   8篇
  1992年   18篇
  1991年   14篇
  1990年   16篇
  1989年   16篇
  1988年   5篇
  1987年   11篇
  1986年   14篇
  1985年   5篇
  1984年   14篇
  1983年   11篇
  1982年   11篇
  1981年   10篇
  1980年   9篇
  1979年   15篇
  1978年   14篇
  1977年   19篇
  1976年   8篇
  1975年   7篇
  1974年   7篇
  1973年   11篇
  1972年   13篇
  1971年   5篇
  1968年   5篇
排序方式: 共有1467条查询结果,搜索用时 15 毫秒
21.
Roots of the susceptible “JG-62” and resistant “WR-315” chickpeas (Cicer arietinum L.) were inoculated with a conidial suspension of Fusarium oxysporum f. sp. ciceris. Anatomical and biochemical studies were carried out in a time-course manner to elucidate the infection process and plant defence reactions. Scanning electron microscope images revealed fungal colonisation in the root hair region. Early occurrence of fungal biofilms associated with the infected “JG-62” root epidermis was also visualised. After 96 h of inoculation, a gradual accumulation of polysaccharide positive deposits was observed in the xylem vessels of the infected “JG-62” roots. Fungal mycelium was observed in the vessel lumen of infected “JG-62” after 22 days of inoculation. Due to fungal invasion during this period, some of the vessels also appeared collapsed in “JG-62”, whereas vessels in “WR-315” remained intact. The host plant defence responses specifically linked to the susceptible interactions were the induction of ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase in roots and shoots.  相似文献   
22.
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.  相似文献   
23.
The performance of several structure-based design (SBD) approaches in predicting the binding affinity of diverse small molecule inhibitors co-crystallized to human renin was assessed to ascertain the modeling tool and method of choice required when dealing with structure-based lead optimization projects. Most of the SBD approaches investigated here were able to provide qualitative guidance, but quantitative accuracy as well as decisive discrimination between [in]actives is still not within reach. Such an outcome suggests that the current methods need improvement to capture the overall physics of the binding phenomenon for consistent applications in a lead optimization setting.  相似文献   
24.
25.
For the first time we have developed a reliable and efficient vacuum infiltration-assisted Agrobacterium-mediated genetic transformation (VIAAT) protocol for Indian soybean cultivars and recovered fertile transgenic soybean plants through somatic embryogenesis. Immature cotyledons were used as an explant and three Agrobacterium tumefaciens strains (EHA 101, EHA 105, and KYRT 1) harbouring the binary vector pCAMBIA1301 were experimented in the co-cultivation. The immature cotyledons were pre-cultured in liquid somatic embryo induction medium prior to vacuum infiltration with the Agrobacterium suspension and co-cultivated for 3 days on co-cultivation medium containing 50 mg l?1 citric acid, 100 µM acetosyringone, and 100 mg l?1 l-cysteine. The transformed somatic embryos were selected in liquid somatic embryo induction medium containing 10 mg l?1 hygromycin and the embryos were germinated in basal medium containing 20 mg l?1 hygromycin. The presence and integration of the hpt II and gus genes into the soybean genome were confirmed by GUS histochemical assay, polymerase chain reaction, and Southern hybridization. Among the different combinations tested, high transformation efficiency (9.45 %) was achieved when immature cotyledons of cv. Pusa 16 were pre-cultured for 18 h and vacuum infiltrated with Agrobacterium tumefaciens KYRT 1 for 2 min at 750 mm of Hg. Among six Indian soybean cultivars tested, Pusa 16 showed highest transformation efficiency of 9.45 %. The transformation efficiency of this method (VIAAT) was higher than previously reported sonication-assisted Agrobacterium-mediated transformation. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into soybean has been developed.  相似文献   
26.
Abstract

Molecular modeling and energy minimisation calculations have been used to investigate the interaction of chromium(III) complexes in different ligand environments with various sequences of B-DNA. The complexes are [Cr(salen)(H2O)2]+; salen denotes 1, 2 bis-salicylideneaminoethane, [Cr(salprn)(H2O)2]+; salprn denotes 1, 3 bis- salicylideneamino-propane, [Cr(phen)3]3+; phen denotes 1, 10 phenanthroline and [Cr(en)3]3+; en denotes eth- ylenediamine. All the chromium(III) complexes are interacted with the minor groove and major groove of d(AT)12, d(CGCGAATTCGCG)2 and d(GC)12 sequences of DNA. The binding energy and hydrogen bond parameters of DNA-Cr complex adduct in both the groove have been determined using molecular mechanics approach. The binding energy and formation of hydrogen bonds between chromium(III) complex and DNA has shown that all complexes of chromium(III) prefer minor groove interaction as the favourable binding mode.  相似文献   
27.
28.
29.
In this work, the Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 2-aminobiphenyl (2ABP) were recorded in the solid phase. The optimised geometry, frequency and intensity of the vibrational bands of 2ABP were obtained by the density functional theory (BLYP and B3LYP) methods with complete relaxation in the potential energy surface using 6-31G(d) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed spectrograms.  相似文献   
30.
Actin is a key cytoskeletal protein with multiple roles in cellular processes such as polarized growth, cytokinesis, endocytosis, and cell migration. Actin is present in all eukaryotes as highly dynamic filamentous structures, such as linear cables and branched filaments. Detailed investigation of the molecular role of actin in various processes has been hampered due to the multifunctionality of the protein and the lack of alleles defective in specific processes. The actin cytoskeleton of the fission yeast, Schizosaccharomyces pombe, has been extensively characterized and contains structures analogous to those in other cell types. In this study, primarily with the view to uncover actin function in cytokinesis, we generated a large bank of fission yeast actin mutants that affect the organization of distinct actin structures and/or discrete physiological functions of actin. Our screen identified 17 mutants with specific defects in cytokinesis. Some of these cytokinesis mutants helped in dissecting the function of specific actin structures during ring assembly. Further genetic analysis of some of these actin mutants revealed multiple genetic interactions with mutants previously known to affect the actomyosin ring assembly. We also characterize a mutant allele of actin that is suppressed upon overexpression of Cdc8p-tropomyosin, underscoring the utility of this mutant bank. Another 22 mutant alleles, defective in polarized growth and/or other functions of actin obtained from this screen, are also described in this article. This mutant bank should be a valuable resource to study the physiological and biochemical functions of actin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号